Significant carrier concentration changes in native electrodeposited ZnO.

نویسندگان

  • Shawn Chatman
  • Lisa Emberley
  • Kristin M Poduska
چکیده

We show that unintentional hydrogen doping of ZnO during the electrodeposition process can impact the material's carrier concentration as significantly as others have reported for intentional extrinsic doping. Mott-Schottky analyses on the natively n-type electrodeposits show a decrease in the carrier concentrations from 10(21) to 10(18) cm(-3) with increasing overpotential. A strong link exists between larger optical band gaps (determined from diffuse reflectance spectroscopy) and higher carrier concentrations, which suggests that hydrogen-based doping underlies the n-type conductivity (Moss-Burstein effect). We propose that kinetic defects introduced during growth at larger overpotentials compete with hydrogen doping, thereby leading to lower net carrier concentrations. This has important implications for using the deposition potential to tune other electrodeposit properties such as the growth rate and morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering electrodeposited ZnO films and their memristive switching performance.

We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct h...

متن کامل

Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals.

Colloidal trivalent gallium (Ga) doped zinc oxide (ZnO) hexagonal nanocrystals have been prepared to introduce more carrier concentration into the wide band gap of ZnO. The dopant (Ga) modifies the morphology and size of ZnO nanocrystals. Low content of Ga enhances the optical band gap of ZnO due to excess carrier concentration in the conduction band of ZnO. The interaction among free carriers ...

متن کامل

Structure study of electrodeposited ZnO nanowires

In this work, we report on the structure study of electrodeposited ZnO nanowires. The samples were mounted as a working electrode and the deposition was performed in a classical three electrodes electrochemical cell. For obtaining ZnO nanowires, the working electrode was a polycarbonate membrane with a random distribution of nanometric pores, gilded one side to ensure electric contact. The morp...

متن کامل

Targetry for cyclotron production of no-carrier-added cadmium-109 from natAg(p,n)109Cd reaction

Background: Solid targets that consist of powder and electrodeposited targets are used commonly to produce radionuclides by accelerators. Since silver is easily electrodeposited in cyanide baths and has a very excellent thermal conductivity, the electrodeposited target is preferable to produce 109Cd. To avoid cracking or peeling of the target during bombardment, it should have a level surface a...

متن کامل

Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene

We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 1 10  شماره 

صفحات  -

تاریخ انتشار 2009